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Abstract
Model checking is shown to be an effective tool in validating the behavior of a fault tolerant embedded
spacecraft controller. The case study presented here shows that by judiciously abstracting away extraneous
complexity, the state space of the model could be exhaustively searched allowing critical functional
requirements to be validated down to the design level. Abstracting away detail not germane to the problem
of interest leaves by definition a partial specification behind. The success of this procedure shows that it is
feasible to effectively validate a partial specification with this technique. Three anomalies were found in
the system one of which is an error in the detailed requirements, and the other two are missinglambiguous
requirements. Because the method allows validation of partial specifications, it also is an effective
methodology towards maintaining fidelity between a co-evolving specification and an implementation.

Keywords: linear temporal logic, communications protocol, checkpointing and rollback, mark and
rollback, synchronous communication, requirements validation, fault tolerance

1 Introduction
This paper describes a practical application of model checking for validating the requirements for a
complex embedded system. The case study described here is of a dual-redundant spacecraft controller, in
which a checkpoint and rollback scheme is used to provide fault tolerance during the execution of critical
control sequences. The software requirements specification for the spacecraft specifies the required
behavior for the checkpoint and rollback scheme. However, the validity of these requirements could not be
determined through inspection. In other words, it was not possible to determine whether the behavior
described in these requirements would provide the desired level of fault tolerance. More importantly,
testing of the eventual implementation would not necessarily provide this validation either, due to the
difficulty of ensuring test case coverage for all possible fault occurrence scenarios.

The approach described here uses a formal automata-based model derived from the specification. We used
varioushigh-level  safety properties to validate the generalized system model. Key system functional
requirements were then validated by defhing  corresponding liveness properties in linear temporal logic,
which were required to be satisfied when the system responds to errors. We used the model checker Spin to
identify traces in the model for which these properties were violated.

The work described in this paper forms part of an on-going investigation into lightweight formal methods
for V&V of requirements specifications. We use the term ‘lightweight’ to indicate that the methods can be
used to perform partial analysis on partial specifications, without a commitment to developing and
baselining complete, consistent formal specifications. The formal methods are used to model critical
chunks of an informal specification, to check that key properties hold. The aim is to find errors, rather than

‘ The research described in this paper was carried out in part bJ the Jet Propulsion Lboratory,  California
Institute of Technology, under a contract with the National Aeronautics and Space Administration, and in
part by West Virginia Universi~  under NASA cooperative agreement #NCC 2-979. Reference herein to any
specific commercial product, process, or service by trade, name, trademark, manufacturer, or other-wise,
does not constitute  or imply ifs endorsement by the United States Go\’ernnlent,  the Jet Propulsion
Laboratory, California institute of Technology or West Virginia University.
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to prove correctness. Application of the methods is driven by the needs of the project, and is used as a
modeling tool to answer questions that arise during verification and validation.

The paper is organized as follows. Section 2 provides a motivation for the case study by briefly surveying
existing approaches to requirements validation and demcmstrating  why these approaches do not provide the
desired level of assurance. We introduce the distinction between verifying requirements through
completeness and consistency checking, and validating requirements against real world properties (’claims’)
that should follow if the statement of the requirements is correct.

Section 3 introduces the dual-redundant system, and shows how it was expressed as a FSM. We show how
the system behaves as a communications system, making it particularly amenable to analysis using the
model checker Spin.

Section 4 describes the steps that were taken to optimize the model, in order to reduce the size of the state
space. We show how the model was partitioned into five separate fault scenarios, and explain in detail how
one of these scenarios was checked. We discuss the process of checking the model against claims expressed
as linear temporal logic formulae. Section 5 presents the results of the analysis.

Section 6 provides a discussion of the results, including a reflection on the benefits seen in the case study.
The importance of partitioning the model in order to make the analysis feasible is discussed, along with
some reflection on the resulting limitation of the analysis (’partial analysis of partial specifications’).

Section 7 presents conclusions and describes our future work. A short overview of the theoretical basis for
the use of the LTL and Biichi automata is provided in appendix A.

2 Background

Requirements validation is the process of determining that the specified requirements capture the real world
needs of the stakeholders. For real-time control systems, this involves checking that the specified behavior
will in fact provide safe and effective control, without introducing any undesirable effects. For reasonably
complex systems, validity of the requirements is hard to establish. Informal methods only provide a very
basic level of assurance, by imposing a structure on the specification that facilitates inspection by domain
experts. Formal methods have the potential to provide a much greater level of assurance, through the
construction of a precise model of the requirements, which can be tested against domain properties.

A number of formal modeling tools are available that are applicable to software systems. Heitmeyer and
Mandrioli [1] provide an excellent overview of the current state of the art. Here we concentrate on state
machine models, which can be used to test safety and Iiveness  properties.

RSML [2] and SCR [3] have both been very successful at providing static analysis techniques for checking
completeness and consistency of specifications expressed as deterministic state machines. However, fault
tolerant systems are inherently non-deterministic, that is, the transition schemes are relational not
functional. Systems with inherent non-determinism are not easily amenable to analytic static evaluation
methods. Systems that can be partitioned into a deterministic and a non-deterministic part can apply tools
such as RSML or SCR to validate deterministic components. For example, Easterbrook [4] has reported
using the SCR tool in this way to validate the Fault Detection, Isolation and Recovery (FDIR) requirements
for a spacecraft bus controller. The deterministic part was modeled in SCR, and then extended to include
non-deterministic elements (i.e. fault occurrences) using the Spin model checker [5]. Such a procedure
would be suggested for example when an otherwise deterministic system had to be shown to be resilient
under (non-deterministic) fault injection. ;

An analysis based methodology such as RSML or SCR requires determinism in the underlying model to
prove requirements completeness and consistency. In contrast, state space exploration methods (’model
checking’) are operational in nature rather than analytic. They allow functional requirements to be validated
over non-deterministic finite state machines using optimized reachability schemes. By incorporating
functional requirements in a non-deterministic mode], requirements properties can be validated. Manna and
Pneuli [6] have shown that virtually any expressible requirements property can be represented as a safety,
precedence, or Iiveness  property using the Linew Temporal Logic (see appendix A).
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Tool Deterndnlstlc Nsm- Counter Requirements

3

Developed I’or
Dctermlnlstic Example Expressible as v&v of

Gcneratlon LTL Formulae _ _
RSML Y TCAS-—
SCR Y Y A7e Aircrafl

sfw—
Murphi Y Y Y Single Process

Snv
SMV Y Y Y Comms H/W
Spin Y Y Y— Comms  SIW— ——

Table 1: System Validation Tools

Three such model checkers have been widely used for verification of low-level designs of both hardware
and software, and communication protocols. The Murphi mode] checker has a rich support for temporal
logic and allows invariants to be expressed in the modei to be checkd as the state space exploration
evolves. It supports a single site model only, which is a disadvantage in the validation of concurrent
systems. The Symbolic Model Verifier (SMV)  has been applied successfully to communication protocols
[7]. SMV can validate synchronous and asynchronous systems against a system specification specified in
the temporal logic CTL [8]. It allows for non-determinisrn in the specifications and for concurrency in the
model within procedures. It supports rich temporal logic specifications but does not support complex data
structures, making it difficult to build a complete low level model. Both SMV and Mtrrphi were designed
for validating hardware systems. The Spin model checker was designed for verification of communication
protocols, and provides support for a basic set of software data structures.

Each of the three model checkers permit a rich set of temporal logic formulae to be incorporated into the
modeling system. We chose to use the Spin model checking system for this study because it (a) was
designed to validate software communications protocols (a) is algorithmic in nature (c) supports data
structures allowing detail where appropriate (d) incorporates linear temporal logic primitives allowing
t%nctional  requirements to be validated over the model (e) and, significantly, because the modeling system
can be used to validate functional requirements over traces from the implementation.

3 DRS High Level Model Description
The case study described here is a Dual-Redundant System (DRS)  for a spacecraft controller, consisting of
two hardware platforms running identical software to maximize system reliability and availability. The
systems exchange information to synchronize software operation. One of the systems has control of the
system bus and is called the prime string. The other, known as the online string, provides a backup,
executing in synchronization or at most within one second of the prime string. Information is exchanged
between the two systems by the synchronous (rendezvous) communication of a 32-word table, the State
Table Broadcast (STB), broadcast by the prime string once per second. The online string uses this to keep
itself in synchronization with the prime string.

The system executes high priority programs called critical sequences that must be tolerant of arbitrary
faults. To this end, the strings use a variant of the checkpoint and rollback process found to work well in
industrial applications [9]. Checkpoints correspond to completed transactions in the executable code. Such
a completion is referred to as a commit operation, meaning that if a system crash occurs, system operations
could be rolled back to the point where the commit occurred and proceed from here. The spacecraft
controller works analogously except that the checkpoints are referred to as markpoints, and are hard coded
into the executing program.

For example, consider the retrieval and return of a soil sample by a remote robot. Successful retrieval of the
sample is an operation that need not be repeated. The code ending in the completion of this process would
be delineated with a markpoint,  The next group of instructions might be the storage of the sample that was
just retrieved, at the end of which would be another markpoint.  If any operation were interrupted by the
occurrence of a fault, the system would repair the fault; roll back control to the beginning of the last
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markpoint;  and continue execution from there. It would not be necessary to waste battery power or time to
retrieve another sample if that was already achieved. This paper focuses on the validation of the fault
tolerance provided by this mark and rollback process.

The fault containment requirements specify that fault protection shall operate only in the prime string.
While the prime string is repairing a fault, the online string must stop executing its copy of the critical
sequence and wail for the STB to tell it that the fault has been repaired, thereby signaling it to proceed with
the critical sequence.

The rollback requirements specify that three full seconds of execution time shall be allowed to pass after a
new markpoint is encountered by the software before the new markpoint  is recognized as a legitimate
rollback point. This is because the system controls external elements that are mostly mechanical in nature.
Accordingly, the software is, in general, always ahead of the hardware. The three-second delay gives any
mechanical tasks a chance to be completed, and for any faults that occurred to be properly logged, before
the previous section of the critical sequence can be considered successfully complete. To implement this
requirement, each new markpoint is aged each second by one second by moving it one level deeper in a
three-level buffer. Only markpoints that have reached the bottom will be eligible for use in the rollback
process. Figure 1 shows a high level snapshot of normal critical sequence operation in both strings.

4 Validation Procedure

4.1 Modeling

The first step was to produce a state model of the DRS system. To model the specified behavior, we treated
the mark and rollback process as a communications system. Holzmann  [10] has defined a communications
protocol as a five component specification for how communication is to be carried out in an error free way
among two or more separate elements. For the mark and rollback prccess, these properties are:

1. The service provided by the protocol is to keep the prime and the online systems in synchronization.
This is done so that the online string can take over quickly should the prime system become
inoperable.

2. The environmental assumptions are that the prime string interacts with an entity that provides
information about faults.

3. The major vocabulary consists of the variables SFP, CS, and CM. SFP is the Spacecraft Fault
Protection flag. When this flag is set, the system has experienced a fault that has not yet been repaired.
The CS flag is set in the prime string and in the backup string when the critical sequence is active i.e.
running in each respective string. The CM flag is set to indicate that the critical sequence is active or in
standby pending the repair of a fault and accordingly to remind the strings that when an interfering
fault is fixed, the suspended critical sequence needs to be restarted at the last valid aged markpoint.

4. The three protocol flags each use single bit encoding, as shown in Table 2.

5. The procedure rules are most complex to deal with, the hardest to specify, the most difficult to
validate. Most of the validation work occurs here. Examples from the mark and rollback SUppOrt
application are that the protocol variables SFP, CM, and CS are to be broadcast once each second to
the online string and actually also back to the prime string by the prime string to allow the prime string

#

Flag Value

=

Meanin
SFP 1 fault

o cleared
Cs 1 CS executing

o CS not executin
CM 1 CS cctive or suspended

o CS inactive and not sus ended

Table 2: Communlcetlon  Flags
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Figure 1: A partial statechari  for the DRS prime string

to check its own synchronization.

The initial model was represented using statecharts  [11]. Figures 1 and 2 show portions of the statech-
for the prime and online strings respectively.

In the case study presented here certain types of faults are of such a nature that they can k repaired by the
prime string. When a fault occurs, the three protocol flags (CS, CM, SFP) change state from (1, 1, O) to (O,
1, 1). This information is broadcast to the online string once per second. When the online string sees the
SFP flag is set, it suspends operation of the executing critical sequence and waits for the prime string to
repair the fault. Once the fault is repaired, the prime string can roll back to the last valid markpoint and
resume processing. The online string will see the new SFP flag is reset in the STB message, rollback to the
aged broadcast markpoint  and restart its copy of the critical sequence.

‘ This example shows a small subset of the actual elements and their procedure rules that belong in each
category. The complete protocol specification is in excess of 80 pages.

4.2 Estimation of State Space Size

Once an initial model is obtained, the state space size must be estimated, in order to assess the potential for
automated validation. This was done by estimating the number of substates needed in the. Spin model to
implement each state shown on the statecharts. For example, the full statechart for the prime string has 16
states and each could be implemented with say 4 substates giving 4 x 4 x . . . x 4 = 41 G states total. “

The rendezvous communication contains 32 data elements 5 of which are unused leaving a total of 27
elements. Each of these remaining 27 is at least a binary flag. This gives 2 x 2 x 2 . . . x 2 = 227 states as a
minimum. This contributes to the overall state space in each of the strings. For the prime string we get 416
x 227 = 2S9 states.

The full statechart  for the online string has 14 states. Assuming 4 substates for each gives 4 x 4 x . . . x 4 =
414 states, The rendezvous communication packet again contributes 227 states giving 4’4 x 227 = 241 states
totai. Both strings operating as one system will have accordingly
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Figure 2: A partial statecharl  for the DRS online string

(259 states prime string) X (241 states Online string)= 21W states.

With aCPUthatexecutesl  state permicrosecond,  thesystem  will Waverse  itsreachability  graph in about
1016 years.

The problem of interest here is to discover the failure modes of this system. To be able to do this we must
reduce the state space down to an manageable size by abstracting away states that are not germane to the
operation we are interested in, namely (a) the repair of faults (b) the rollback process and (c) the
synchronization between the prime and the online (backup) systems. The result is a partial specification,
but which has enough detail left to partially validate the properties of interest.

* 4.3 Reducing the state space

There are a number of ways in which the state space can be reduced to a size amenable to model checking.
Firstly, the functional requirements of the system maybe partitioned into equivalence classes, by exploiting
natural symmetries or subclasses that may be present in the domain. Secondly, the validation task can be
partitioned by separately validating requirements that are known to be independent from one another.
Validation of each requirement in isolation should traverse less of the overall state space than all of the
requirements taken together. In either case, detail that is not germane to each validation task can be
temporarily removed from the model. We will illustrate each of these approaches below.

For the DRS system, we partitioned the functional behavior by separating out the classes of fault that can
occur. A key fault protection requirement states that:

Fault protection shall be designed assuming only one fault occurs at a time, and
that a subsegment fault will occur no earlier than the response completion time
for the first fault, and that multiple detections occurring within the response
time are symptoms of the original fault.

The requirements identify 5 classes of faults that can occur on the spacecraft. Accordingly, the Mark and
Rollback process can be partitioned into five equivalence classes. Each can be treated independently of the
others, significantly reducing the size of the overall state space to be checked by the validation process. We
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also exploited the symmetry between the redundant processors running the online and the prime strings, by
recognizing [hat either string could run on either processor.

The five fault classes are as follows:
1. Peripheral Interfering Fault
2. SFP non-Under-Voltage Trip
3. Online Fault
4. Prime Fault
5. SFP Under-Voltage Trip

In the first three cases, the Prime String will handle the fault, while both strings suspend execution of the
critical sequence. In case 4, the fault is in the prime string, and the online string will take over, The online
string then becomes prime. In the final case, the fault could be anywhere, so either processor may end up as
prime. In all cases, once the fault protection response is complete, the critical sequence should be resumed
from the last aged markpoint, by whichever processor is now prime.

Equivalence class 1 contains the fundamental mark and rollback scenario common to the other classes
during normal operation and it has less structure in that it executes the smallest subset of states in the 5
partitions considered above. We therefore used this as the first validation exercise. We will  concentrate
only on this class for the remainder of the paper. It will be seen that validation of this class has implications
for the other requirements classes as well. We proceed first by removing all states in the statecharts  that do
not contribute to the mark and rollback process. The resulting states are shown in figures 1 and 2.

The prime string now contains 7 states and the online string 5 states. If we assume once again that as a
minimum again each state can be implemented with 4 substates, then these two elements contribute

74 x 54 = 1,500,625  states.

The state space can be further reduced by ignoring the CM and CS flags. By abstracting these two flags
away we will be checking only the fundamental mark and rollback process that depends upon the SFP flag
and the relative position of the markpoint with respect to critical sequence execution time. If we want to
learn about any possible effects of the CS and the CM flags they will have to be inserted back into the
model at some point. If the state space becomes too large, a non-exhaustive search option would then have
to be used.

A further strategy for reducing the state space is to reduce the complexity of the input data. ‘I’he model can
be validated on the simplest possible test runs, and then if no errors are uncovered, the size of the dataset
can be increased gradually. In this case, the length of the critical sequence can be considered input data. A
minimal critical sequence would contain the smallest number of markpoints  possible. A critical sequence
containing 3 markpoints was chosen for the initial exercise, as it contained sufficient complexity to
determine all possible combinations of fault occurrence and rollback.

‘ Finally, by removing the states that are not executed in fault class 1, the state space was reduced to an
estimated:

(4 prime)4 x (3 x 2 rendezvous packet)2 x (3 online)4  = 746,496 states

Now adding an extra flag for the presence of a fault doubles this to 1,492,992 states. This is still a
manageable state space for the Spin tool.

4.4 Validation of Case 1

A peripheral interfering fault is a spacecraft fault that is outside of the DRS system per se. These
correspond to the type covered by partition 1 in this case study. In this case the prime string is given the
task of repairing the fault. The prime string would set the SFP flag to 1 to indicate a fault operation is in
progress; stop the running critical sequence; and enler the SFP Active state to repair the fault (see Figure 1).
The STB would still be transmitted to the online string once per second. That is, since the fault is outside of
the prime string, its ability to function has accordingly not been impaired. Having received the STB, the
online string will cease running its copy of the critical sequence and transition to the Fault Idle state,
waiting there until it receives an STB message indicating that the fault has been cleared. Once the prime
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string has repaired the fault it sets its SFP flag to zero and enters the Fault Idle state in preparation for
resuming the critical sequence. At this point it rolls back to the last valid (aged) markpoint; and resumes
executing its copy of the critical sequence at this location, When the online string sees an STB message
indicating that the SFP flag is O, it enters the SEQUENCE CRITICAL state resuming execution of its copy
of the critical sequence at the aged broadcast markpoint,

The first step in the validation is to develop Linear Temporal Formulae representing the requirements to be
validated. Each LTL formula is then incorporated into the resulting Spin model as a “never” clause. Details
of the validation method are described in Appendix A.

To check that the desired fault tolerance is achieved, three separate functional requirements need to be
validated in each string:

R]. If a fault occurs when the last markpoint  was at the start of the program, the prime string shall roll
back to the start regardless of how much time has expired since the program started running.

R2. If a fault occurs when the time t following the last markpoint was less than 3 seconds and the last
markpoint was not at the start of the program, the prime string shall roll back to the next previous
markpoint. That is, do not use the markpoint that has not yet been properly aged, even though it
has been encountered in the execution of the current critical sequence.

‘ R3. If a fault occurs when the time t following the last markpoint was greater than or equal to 3
seconds the prime string shall roll back to the last valid aged markpoint.

Requirements R4, R5, and R6 are the same three requirements for the online string. These can all be
expressed as Iiveness conditions; they specify an action that must take place now or in the future.
Symbolically, the LTL formulae representing these conditions have the form:

opA~](p-~oq)

Where p is the occurrence of a fault, and q is the correct response. The formula expresses the condition that
eventually a fault (p) does occur, that once it occurs, at some point in the future the correct rollback
operation (q) will occur. The LTL equivalent of requirement R1 is as follows:

opA[](p-+oq) (RI)
where p = (SFP = 1 )A(markpoint  = start)

and q = (pc = markpoint)A(SFp = O)

Where markpoint is the default markpoint  address of the beginning of the sequence; pc is the critical
sequence machine program counter; and start is the address of the beginning of the critical sequence
program. Requirement R2 becomes:

Or ACl(r->Os) (R2)
i where r = (t c 3)A(WP = 1 )A(mp_current  # start)

and s = (pc = mp_next_previous)  A(SFP = O)

and R3 becomes:

O u A L](u + O v) with u and v defined as (R3)
where u = (t 2 3) A(SFP = 1 )A (mp..current = mpge_three_sec)

and v = (pc = mp_current)A(SFp  = O)

Where t is time in seconds since the last encountered markpoint; here mp_current represents the current
markpoint and mp_previous represents the markpoint preceding mp_current;  each of these represents the
case where less than three seconds have expired. mpt_ge._three_sec  represents the markpoint for the case
where three or more seconds have expired since the last encounter of a markpoint  in the sequence.

Three analogous requirements are needed for the online string, using its copies of SFP and Mark:

Oh AC!(h-+Oi) (R4)

OjA[~+Ok) (R5)

olA:l(l+om) (R6)
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Each additional LTL formula that is added to the model adds more complexity, making runtimes and
memory consumption very large. The best way to circumvent this problem is 10 validate each functional
requirement separately. For example, we can check that requirement R I is satisfied without looking at R2
and R3 because they are independent requirements. However, requirement R I is not independent of R4.
This ncm-orthogonality  requires that both be validated in the same run. Semantically, this means that when
rollback takes place in the prime string under the condition that we are at the start of the program, then the
same rollback must be also shown to take place in the ordine string. The derivation in Appendix A shows
that a jointly operational Btichi Automaton can be produced from separate LTL formula by writing down
the logical conjunction of the formulae and then converting the result to an equivalent automaton. The
conversion itself is done with the Spin option -f and is automatic although the user may want to apply a
certain amount of optimization on the result to make the resulting automaton more efficient. To keep the
resulting system at a minimum, the automaton for rollback to the beginning of the program is derived from
RI and R4:

opA[l(p+oq)A[.@i (R7)

Analogous minimal LTL formulae were derived for the other 3 cases and they were implemented in the
model.

Additional validation can be performed by defining further properties that should hold in the model. For
example, we could check that aged markpoints  are always in agreement with each. other. This condition can
be stated by using the safety condition that the aged markpoint x in the prime string never disagree with the
aged broadcast markpoint y in the online string. The corresponding safety condition would be

El(x= y) (R8)

Additionally, assertions were used throughout the model to confirm that the model had the desired
behavior.

5 Results

Five different fault categories were identified to test the model. The results reported here cover the first of
these categories only (partition 1), but we do discuss implications for the other five fault categories. Fault
category 1 refers to the behavior of the DRS prime string in the face of a peripheral interfering fault.

Six separate requirements on the rollback scheme were validated, as described in section 4.4. Each of the 6
requirements involved exhaustive examination of approximately 100,000 states in the model, and took
about 30 seconds. The response and recovery in each case was to the injection of a single peripheral
interfering fault in all possible ways, based on the model. Three of the 6 runs for the 6 requirements failed
in the verification.

f Three anomalies were identified and are described below. The first two are errors in the requirements that
might not occur in the DRS implementation. ~.e third is a discrepancy in the detailed requirements that
could allow for erroneous behavior of the implemented system.

1. Depending on how error detection and repair is handled, it may be possible for the prime system to
detect and to repair an intermittent error within one second, and then consequently not to broadcast this
state to the online system. The online system would not receive notice of the fault; therefore, it would
continue executing its copy of the critical sequence. Repeated occurrence of this scenario would cause
the online string to get way ahead of the prime string, possibly to the point where the online str~ng
would complete execution of its copy of the sequence. If the prime string subsequently fails, the online
string may not have a markpoint  to roll back to. This anomaly is due entirely to the ordering of
processing described in the requirements specification.

2. This anomaly depends upon how faults are handled at the end of a critical sequence. If a fault occurs in
the prime string within two seconds af(er the end of the critical sequence is reached, it is not clear how
[he rollback if any would be handled. The requirements specification did not designate the critical
sequence end instruction as a markpoint.  Our validation run failed because our model assumed that
once the critical sequence completed, the online system returned to the Power Up Idle state:
accordingly there would be no suspended critical sequence to return to once the fault was corrected. If
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the fault were to bring the prirnc  system down, the online system may need to roll back to the last aged
markpoint. This anomaly is due to a missing requirement.

This anomaly concerns the occurrence of it fault 2 seconds after a markpoint  is encountered in the
prime string. The prime system free?.es the aging functional n + 2 seconds. Since there is up to a half
second delay between the occurrence of the fault and the notification of the fault in the STB
handshake, the online string may continue to execute, aging its markpoint  by one further second. At
this point the online system receives the SFP = I value and now both agers  are frozen. Once the fault is
repaired, the both strings will roll back, but the online system will roll back to the newer markpoint,
This would not cause a problem if the prime system then completes the critical sequence. However, if
the online system should subsequently have to take over due to a prime failure - possibly associated
with the (symptomatic) peripheral interfering fault that was just processed, it could roll to an
inappropriate block of code. This problem would not go away if the aging buffers were made deeper or
shallower. It would just occur at a different place since it is a consequence of the relative time
difference between the two aging schemes.

6 Discussion

The analysis technique used in this study is relatively new, and was not sufficiently mature just a few years
ago to enable its use. The DRS operates as a communication system that must be robust under the incidence
of arbitrary faults. The validation of requirements for such fault tolerant systems is particularly hard,
because of the non-determinacy introduced by the fault behavior. Holzmann  [ 10] points out that even for
relatively simple communication protocols:

“It is almost impossible to manually verify correctness requirements such as the
ones discussed, no matter how diligent or disciplined the designer. The behavior
of even simple protocol systems can be of a complexity that no designer can be
expected to assess accurately. =

Worse still, the desired validation cannot be established through rigorous testing of the implementation
either. The complexity of the communication system, together with the non-deterministic occurrence of
faults makes exhaustive testing infeasible.

The use of model checkers opens up new possibilities for validating such systems. In principle, exhaustive
checking of the requirements model is also infeasible. However, by exploiting the structure of the state
space, a partial model can be extracted that is sufficient for the validation exercise. The reduction in the
size of the state space was critical in this case study, and was achieved by dividing the requirements into 5
partitions and abstracting away extraneous detail. The original (reduced) estimate of the size of the model
state space was over 100 million states. Although the estimate after simplification was between about
62,000 and 800,000 states, the actual number of states in the model was just over 100,000 states allowing
the validation of each of the six requirements in partition 1 to be completed in 30 seconds.

The complexity of the validation exercise was also reduced by validating requirements individually. It is
possible to combine requirements (and domain properties), as described in Appendix A, so that they can be
checked in a single validation run. However, doing so often increases the complexity of the model beyond
the limit of current model checking technology. Hence, we only combine requirements in this way when
they are known or suspected not to be independent.

It is important to note that with this approach, any claims of completeness are sacrificed; we are only
performing partial validation of partial specifications. Hence, the focus is not on proving correctness, but
on revealing errors [12]. We have shown in the case stucly that the approach is capable of finding subtle
errors that are otherwise almost impossible to detect. If we did not find any errors, that would not establish
correctness, but it does provide a higher level of assurance than is otherwise possible.

7 Summary and Conclusions
We have demonstrated through a case study how fault tolerance requirements can be validated through
non-deterministic model checking. The system described in the case study used a mark and rollback
scheme to implement fault tolerance. The system has to complete high priority tasks called critical
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sequences efficiently and at the some time to respond to and repair faults. To meet this requirement, hard
rollback points (markpoints) are embedded in the critical sequence code so that completed subtasks would
not have to be repeated when fault conditions force the executing critical sequence to suspend operation to
service the fault. Faults occurring within subtasks  are repaired and rollback is then done to the start of the
last uncompleted subtask. A hot backup (the ‘online string’) is operational synchronously to increase
reliability and availability.

The validation scheme described in this paper was implemented as a Spin model with three 3 key
components. First, the model contains an underlying operating system (executive) that contains a
checkpointing scheme referred to as the mark and rollback process, which was modeled deterministically.
Second, a getreralized critical sequence was chosen to be executed by the model operating system to make
it possible for requirements and design errors to surface. Finally, a fault injection process was used to non-
deterministically  inject a single fault into the system model. The validation system then attempted to
execute the critical sequence and to recover from all possible injections of a single fault into the executing
critical sequence. In this way 3 anomalies were discovered.

The model was reduced to a feasible size for validation by abstracting away unnecessary detail leaving
behind a partial specification. The functional rollback requirement was elaborated into 6 separate but
dependent requirements. A Linear Temporal Logic scheme was developed to validate 3 pairs of coupled
requirements over the dual-redundant system. This procedure allowed the rollback requirement in the prime
or control system to be validated together with its coupled ancillary mirror rollback requirement in the
online (hot backup) system. In this way, the study showed that a partial specification for a complex
spacecraft controller can be effectively validated within the framework of the remaining requirements.

We plan to extend the application of the methodology demonstrated hereto developmental efforts over the
software lifecycle using partial specifications and their associated co-evolving prototype implementations.
The approach works by instrumenting a partial or complete implementation in order to detect the presence
of paths through the state space that correspond to the satisfaction of functional requirements. The resulting
log files are then transformed into a set of traces to be executed by a model checker to validate that key
properties are met. The functional requirements in the system are validated by expressing them as Linear
Temporal Logic propositions that are translated into an appropriate automata type supported by the
particular model checker in use. Then, by traversing the annotated log files encapsulated as processes over
the model, the functional requirements are validated in the usual way by the model checker as discussed by
Holzmann [5].

This methodology has been successfully used on a pilot project to validate a complex communications
protocol called RMP [13]. Two teams consisting of an IV&V  team and a software development team were
used. Both the development team and the IV&V teams worked from an evolving partial specification.
While the development team was responsible for the implementation, it was the responsibility of the IV&V
team to apply a modeling scheme to check that the evolving specification and the implementation were
consistent with each other. The IV&V team then used the model checker to validate the requirements. In
this way when errors in the implementation surfaced they could be brought up to date with the
specification; and if the specification were in error the implementation could be used to update the
specification. Each derived or added requirement would of course then be incrementally validated and used
to assist in driving the specification forward and so on. By working in tandem in this way, costly
backtracking errors are prevented. The result was a saving in operational efficiency and lower maintenance
costs due to good underlying design.
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9 Appendix A: Linear Temporal Logic Background
The Spin/PROMELA modeling scheme derives much of its power from its ability to incorporate formal

~ theorem proving elements into its search schemes. Buchi [14] discovered the fundamental relationship
- between finite automata and the second-order monadic calculi. This innovation made it possible to

incorporate Linear Temporal Logic (LTL) assertions as components of computer modeling schemes.

A Buchi automaton is a nondeterministic Finite State Machine (FSM) A = (X, S, ~r,  SO, ~. Z is the input

alphabet, ~ is the set of states, SO the set of initial states, and ~ is the set of accepfing states. % E S x X x

S is the transition relation. If ( s, o, s’) IE % then A can move froms to s’ upon reading cr. A trace or input
word is an infinite sequence 6= al CJ2 03, . . . , ~i ~ Z, while a run r, over o is an infinite sequence S9 -!3+

s, -!2% . . . . where So E S.,( sl, Gi+ 1, si+l )~ Z,i=O, l,.... A run r is said to be accepting iff there exists

a state g E ~such that g appears infinitely often in r. The language L(A) is the set of all traces o such that
A has an accepting run over o.

Let~ be an LTL assertion corresponding to a system requirement to be validated that generates automaton

A i. Given n Buchi  automata of the form Ai = (~i,  sit ~i, Soi, Yi).  they are closed under the operation of

intersection. Their intersection (?:., A, accordingly is a Biichi automaton, and it accepts the language

n:., ‘(A  ) The LTL formula that generates this automaton has the form
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k’ “f

. .

/=n

(1)

Equation ( 1 ) allows multiple LTL formulae to be concatenated such that the resulting automaton will
preserve the characteristics of the language accepted by each automaton were it to be implemented in
isolation. This means that the set of all traces C, that were recognized by each automaton Ai in isolation

will also be recognized by the composite automaton n ~.,f ‘A, I).

By incorporating the Finite State Machine (FSM) representation of the formal properties to be validated by
the model, the model can be routinely checked for the presence or the absence of the desired characteristics.

The Spin/PROMELA  system has an LTL translator that can produce the corresponding Buchi automaton
from an input requirement expressed as an LTL formula. The Spin modeling system checks to see that
finite state program 2 satisfies the temporal logic formula$  First, the global state graph of 2P is computed.
Smond,  the Btichi automaton is constructed for N: ~. Third, the synchronous product ~ X Lf is

computed. Finally, the validation run is performed on ~ x ~. For each state transition in P, Spin checks

to see if a corresponding transition in + is possible. Once one of +s accepting states has been entered,
it must be shown that that state is reachable from itself. When this happens, Lf will have ~n shown to

have recognized a string o from the language generated from the original LTL formula ~. For efficiency,
Spin executes the 3 steps in 1 pass. At this point a trail file can be written showing the sequence of state
transitions in T that gave rise to the accepting state in Amf This file can then be annotated and run as a test

case against the implementation.
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